There is continued controversy as to the sequential steps and mechanism(s) responsible for the in vivo acquisition of multiple mutations during neoplastic transformation. We investigated the in vivo clonality and mutational spectra of hypoxanthine-guanine phosphoribosyltransferase (HPRT) mutations in T cells from children with acute lymphocytic leukemia (ALL) to gain insight into the mutagenic mechanisms associated with leukemogenesis. We observed several instances of multiple, independent HPRT mutations accumulating in vivo in T cell receptor (TCR) gene defined clones that had undergone extensive pre-and/or post-thymic expansion following chemotherapy. In addition, we also detected the accumulation of multiple unique single mutations within distinct expanding postthymic T cell clones. This pattern of clonally restricted hypermutability is compatible with extensive cell proliferation and selection alone without postulating genomic instability. These observations provide a paradigm for a continuum of cellular events that eventually results in the clonal accumulation of mutations in selected populations of cells in vivo and may provide insight into the primary genetic events associated with leukemogenesis, as well as the development of second malignancies and drug resistance following chemotherapy. Leukemia (2001Leukemia ( ) 15, 1898Leukemia ( -1905