This paper presents finite elements for a higher order steel–concrete composite beam model developed for the analysis of bridge decks. The model accounts for the slab–girder partial interaction, the overall shear deformability, and the shear-lag phenomenon in steel and concrete components. The theoretical derivation of the solving balance conditions, in both weak and strong form, is firstly addressed. Then, three different finite elements are proposed, which are characterised by (i) linear interpolating functions, (ii) Hermitian polynomial interpolating functions, and (iii) interpolating functions, respectively, derived from the analytical solution expressed by means of exponential matrices. The performance of the finite elements is analysed in terms of the solution convergence rate for realistic steel–concrete composite beams with different restraints and loading conditions. Finally, the efficiency of the beam model is shown by comparing the results obtained with the proposed finite elements and those achieved with a refined 3D shell finite element model.