The paper presents a computationally e±cient method for modeling and simulating distributed systems with lossy transmission line (TL) including multiconductor ones, by a less conventional method. The method is devised based on 1D and 2D Laplace transforms, which facilitates the possibility of incorporating fractional-order elements and frequency-dependent parameters. This process is made possible due to the development of e®ective numerical inverse Laplace transforms (NILTs) of one and two variables, 1D NILT and 2D NILT. In the paper, it is shown that in high frequency operating systems, the frequency dependencies of the system ought to be included in the model. Additionally, it is shown that incorporating fractional-order elements in the modeling of the distributed parameter systems compensates for losses along the wires, provides higher degrees of°exibility for optimization and produces more accurate and authentic modelling of such systems. The simulations are performed in the Matlab environment and are e®ectively algorithmized.