Cyber‐physical systems (CPSs) are monitored and controlled by a computing and communicating core. This cyber layer enables better management of the controlled subsystem, but it also introduces threats to the security and protection of CPSs, as demonstrated by recent cyberattacks. The resulting governance and policy emphasis on cybersecurity is reflected in the academia by a vast body of literature. In this article, we systematize existing knowledge on CPS analysis. Specifically, we focus on the quantitative assessment of CPSs before and after the occurrence of a disruption. Through the systematic analysis of the models and methods adopted in the literature, we develop a CPS resilience assessment framework consisting of three steps, namely, (1) CPS description, (2) disruption scenario identification, and (3) resilience strategy selection. For each step of the framework, we suggest established methods for CPS analysis and suggest four criteria for method selection. The framework proposes a standardized workflow to assess the resilience of CPSs before and after the occurrence of a disruption. The application of the proposed framework is exemplified with reference to a power substation and associated communication network.The case study shows that the proposed framework supports resilience decision making by quantifying the effects of the implementation of resilience strategies.