Winglets are an extended angled or vertical projected at the wing tips used to reduce the drag encountered during the flight of an aircraft. The main aim of this research was to study the effects of winglets on NACA 4412 airfoil at 15° angle of attack. The simulation was done on the basis of the aerodynamic properties such as lift (CL), drag (CD), and lift/drag (CL/CD) ratio for both with and without the winglets at various cant angles. The designing was carried out in ANSYS Design Modeler for both with and without winglet. Further, the meshing part was again carried out in ANSYS Mesh. K‐Epsilon (two equation) turbulence model is used for the simulation at the inlet speed of 100 m/s, since it is the most common model used to simulate the mean flow characteristics for high turbulent conditions. Further, the cant angle has been optimized to get the maximum coefficient of lift using Nelder Mead, Genetic Algorithm, and Genetic Algorithm with ANN optimization techniques.