The incorporation of the cloud technology with the Internet of Things (IoT) is significant in order to obtain better performance for a seamless, continuous, and ubiquitous framework. IoT has many applications in the healthcare sector, one of these applications is voice pathology monitoring. Unfortunately, voice pathology has not gained much attention, where there is an urgent need in this area due to the shortage of research and diagnosis of lethal diseases. Most of the researchers are focusing on the voice pathology and their finding is only to differentiating either the voice is normal (healthy) or pathological voice, where there is a lack of the current studies for detecting a certain disease such as laryngeal cancer. In this paper, we present an extensive review of the state-of-the-art techniques and studies of IoT frameworks and machine learning algorithms used in the healthcare in general and in the voice pathology surveillance systems in particular. Furthermore, this paper also presents applications, challenges and key issues of both IoT and machine learning algorithms in the healthcare. Finally, this paper highlights some open issues of IoT in healthcare that warrant further research and investigation in order to present an easy, comfortable and effective diagnosis and treatment of disease for both patients and doctors.
The metaheuristic genetic algorithm (GA) is based on the natural selection process that falls under the umbrella category of evolutionary algorithms (EA). Genetic algorithms are typically utilized for generating high-quality solutions for search and optimization problems by depending on bio-oriented operators such as selection, crossover, and mutation. However, the GA still suffers from some downsides and needs to be improved so as to attain greater control of exploitation and exploration concerning creating a new population and randomness involvement happening in the population at the solution initialization. Furthermore, the mutation is imposed upon the new chromosomes and hence prevents the achievement of an optimal solution. Therefore, this study presents a new GA that is centered on the natural selection theory and it aims to improve the control of exploitation and exploration. The proposed algorithm is called genetic algorithm based on natural selection theory (GABONST). Two assessments of the GABONST are carried out via (i) application of fifteen renowned benchmark test functions and the comparison of the results with the conventional GA, enhanced ameliorated teaching learning-based optimization (EATLBO), Bat and Bee algorithms. (ii) Apply the GABONST in language identification (LID) through integrating the GABONST with extreme learning machine (ELM) and named (GABONST-ELM). The ELM is considered as one of the most useful learning models for carrying out classifications and regression analysis. The generation of results is carried out grounded upon the LID dataset, which is derived from eight separate languages. The GABONST algorithm has the capability of producing good quality solutions and it also has better control of the exploitation and exploration as compared to the conventional GA, EATLBO, Bat, and Bee algorithms in terms of the statistical assessment. Additionally, the obtained results indicate that (GABONST-ELM)-LID has an effective performance with accuracy reaching up to 99.38%.
The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images.
Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.