Visual cortical surface area varies two-to threefold between human individuals, is highly heritable, and has been correlated with visual acuity and visual perception. However, it is still largely unknown what specific genetic and environmental factors contribute to normal variation in the area of visual cortex. To identify SNPs associated with the proportional surface area of visual cortex, we performed a genome-wide association study followed by replication in two independent cohorts. We identified one SNP (rs6116869) that replicated in both cohorts and had genome-wide significant association (P combined = 3.2 × 10
−8). Furthermore, a metaanalysis of imputed SNPs in this genomic region identified a more significantly associated SNP (rs238295; P = 6.5 × 10 −9) that was in strong linkage disequilibrium with rs6116869. These SNPs are located within 4 kb of the 5′ UTR of GPCPD1, glycerophosphocholine phosphodiesterase GDE1 homolog (Saccharomyces cerevisiae), which in humans, is more highly expressed in occipital cortex compared with the remainder of cortex than 99.9% of genes genome-wide. Based on these findings, we conclude that this common genetic variation contributes to the proportional area of human visual cortex. We suggest that identifying genes that contribute to normal cortical architecture provides a first step to understanding genetic mechanisms that underlie visual perception.allometry | brain morphometry | imaging genetics | V1