Context
The CACNA1C gene (alpha 1C subunit of the L-type voltage-gated calcium channel) has been identified as a risk gene for both bipolar disorder and schizophrenia but the mechanism of association has not been explored.
Objective
To identify the neural system mechanism that explains the genetic association between the CACNA1C gene and psychiatric illness, using neuroimaging and human brain expression.
Design
We used BOLD fMRI to measure brain activation in circuitries related to bipolar disorder and schizophrenia by comparing CACNA1C genotype groups in healthy subjects. We tested the effect of genotype on mRNA levels of CACNA1C in post-mortem human brain. A case-control analysis was used to determine the association of CACNA1C genotype and schizophrenia.
Setting
National Institutes of Health Clinical Center
Patients
Healthy Caucasian men and women participated in the fMRI study. Post-mortem samples from normal human brains were used for the brain expression study. Patients with schizophrenia and healthy subjects were used in the case-control analysis.
Main Outcome Measures
BOLD fMRI, mRNA levels in post-mortem brain samples, and genetic association with schizophrenia
Results
The risk associated single nucleotide polymorphism (SNP rs1006737) in CACNA1C predicted increased hippocampal activity during emotional processing (puncorr=0.001, pFDR=0.052, Z=3.20) and increased prefrontal activity during executive cognition (puncorr=2.8e-05, pFDR=0.011, Z=4.03). The risk SNP also predicted increased expression of CACNA1C mRNA in human brain (p=0.0017). CACNA1C was associated with schizophrenia in our case-control sample (OR 1.77, p=0.026).
Conclusions
The risk associated SNP in CACNA1C maps to circuitries implicated in genetic risk for both bipolar disorder and schizophrenia. Its effects in human brain expression implicate a molecular and neural systems mechanism for the clinical genetic association.