Haemonchus contortus is a blood-sucking gastrointestinal nematode that infects all ruminants and causes significant economic losses in production. Characterizing the genetic variability of H. contortus populations is crucial for understanding patterns of disease transmission and developing effective control strategies against haemonchosis. This study aimed to identify the genetic variability of H. contortus isolates in small ruminants from slaughterhouses in Bangladesh. During January to December 2015, 400 abomasa samples were collected and 186 were found to be positive for Haemonchus. A 321-bp fragment of the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA and an 800-bp fragment of the mitochondrial nicotinamide dehydrogenase subunit-4 gene (nad4) were amplified using polymerase chain reaction (PCR) and directly sequenced. The results showed 10 genotypes (ITS-2) and 45 haplotypes (nad4) among the 186 worms. The sequences were 98.5 to 100% identical to reference sequences from the GenBank database. ITS-2 sequence analysis revealed four nucleotide substitutions at positions 30, 41, 42, and 216. There was one transition (C/T) at position 42 and three transversions (C/A at position 30, G/C at position 41, and T/A at position 216). The nad4 gene sequences showed 15 substitutions, all of which were transitions. The pairwise distance of ITS-2 between H. contortus populations ranged from 0.005 to 1.477. The nucleotide diversity (μ) among the populations was 0.009524 using ITS-2 and 0.00394 using nad4. This study indicated low genetic deviation among H. contortus populations in Bangladesh.