Abstract:In geographic information systems, the reliability of querying, analysing, or reasoning results depends on the data quality. One central criterion of data quality is consistency, and identifying inconsistencies is crucial for maintaining the integrity of spatial data from multiple sources or at multiple resolutions. In traditional methods of consistency assessment, vector data are used as the primary experimental data. In this manuscript, we describe the use of a new type of raster data, tile maps, to access the consistency of information from multiscale representations of the water bodies that make up drainage systems. We describe a hierarchical methodology to determine the spatial consistency of tile-map datasets that display water areas in a raster format. Three characteristic indices, the degree of global feature consistency, the degree of local feature consistency, and the degree of overlap, are proposed to measure the consistency of multiscale representations of water areas. The perceptual hash algorithm and the scale-invariant feature transform (SIFT) descriptor are applied to extract and measure the global and local features of water areas. By performing combined calculations using these three characteristic indices, the degrees of consistency of multiscale representations of water areas can be divided into five grades: exactly consistent, highly consistent, moderately consistent, less consistent, and inconsistent. For evaluation purposes, the proposed method is applied to several test areas from the Tiandi map of China. In addition, we identify key technologies that are related to the process of extracting water areas from a tile map. The accuracy of the consistency assessment method is evaluated, and our experimental results confirm that the proposed methodology is efficient and accurate.