Special accelerator architecture has achieved great success in processor architecture, and it is trending in computer architecture development. However, as the memory access pattern of an accelerator is relatively complicated, the memory access performance is relatively poor, limiting the overall performance improvement of hardware accelerators. Moreover, memory controllers for hardware accelerators have been scarcely researched. We consider that a special accelerator memory controller is essential for improving the memory access performance. To this end, we propose a dynamic random access memory (DRAM) memory controller called NNAMC for neural network accelerators, which monitors the memory access stream of an accelerator and transfers it to the optimal address mapping scheme bank based on the memory access characteristics. NNAMC includes a stream access prediction unit (SAPU) that analyzes the type of data stream accessed by the accelerator via hardware, and designs the address mapping for different banks using a bank partitioning model (BPM). The image mapping method and hardware architecture were analyzed in a practical neural network accelerator. In the experiment, NNAMC achieved significantly lower access latency of the hardware accelerator than the competing address mapping schemes, increased the row buffer hit ratio by 13.68% on average (up to 26.17%), reduced the system access latency by 26.3% on average (up to 37.68%), and lowered the hardware cost. In addition, we also confirmed that NNAMC efficiently adapted to different network parameters.