The fine structure of the neutral exciton in a single self-assembled InGaAs quantum dot is investigated under the effect of a lateral electric field. Stark shifts up to 1.5 meV, an increase in linewidth, and a decrease in photoluminescence intensity were observed due to the electric field. The authors show that the lateral electric field strongly affects the exciton fine-structure splitting due to active manipulation of the single particle wave functions. Remarkably, the splitting can be tuned over large values and through zero. © 2007 American Institute of Physics. ͓DOI: 10.1063/1.2431758͔There is currently great interest in producing entangled photons on demand for applications in quantum information processing. 1 One proposal which spurred much research is using radiative biexciton-exciton cascade in semiconductor quantum dots ͑QDs͒ to produce pairs of polarization entangled photons. 2 In an idealized QD, the bright exciton states ͑M = ±1͒ are degenerate. In this case the two decay paths from the biexciton to the vacuum state via the intermediate single exciton are indistinguishable in energy; thus photons emitted in the radiative cascade are polarization entangled. However, in practice, the rotational symmetry of a self-assembled QD is broken and the electron-hole exchange interaction mixes the bright exciton states into a nondegenerate doublet ͓referred to as a fine-structure splitting ͑FSS͔͒. This leads to an energetically distinguishable recombination path for the biexciton-exciton cascade. Polarization correlations are observed in the linear basis but polarization entanglement is destroyed due to the FSS. 3,4 For photons to be polarization entangled using this scheme, the requirement that the FSS be less than the homogeneous linewidth must be met. The FSS is typically 10-100 eV, while the homogeneous linewidth of self-assembled InGaAs QDs is ϳ1 eV. 5 Techniques used to actively tune the FSS include an inplane electric 6 or magnetic 7 field and an in situ uniaxial stress. 8 Also, QDs which are smaller due to the growth process 9 or subsequent annealing 10 have a smaller FSS. Unfortunately, such QDs are higher in energy and the QD photons become difficult to distinguish from those produced in the wetting layer. Recently, polarization entangled photons have been reported from specific QDs with energetically overlapping bright exciton states 11 and initially nondegenerate states tuned via a magnetic field. 12 However, a robust approach that would allow one to actively tune the FSS from a large value to zero for each QD is still necessary to realize an event ready entangled photon pair source. To this end we further explore the effect of a lateral electric field on the FSS.There are three basic characteristics of an exciton in a lateral electric field attributed to the quantum confined Stark effect, as has been investigated for quantum wells 13 and QDs: 14 a redshift in recombination energy, decreased oscillator strength, and an increase in nonradiative carrier tunneling probability. Additionally, electric fi...