Quantum dots or rings are artificial nanometre-sized clusters that confine electrons in all three directions. They can be fabricated in a semiconductor system by embedding an island of low-bandgap material in a sea of material with a higher bandgap. Quantum dots are often referred to as artificial atoms because, when filled sequentially with electrons, the charging energies are pronounced for particular electron numbers; this is analogous to Hund's rules in atomic physics. But semiconductors also have a valence band with strong optical transitions to the conduction band. These transitions are the basis for the application of quantum dots as laser emitters, storage devices and fluorescence markers. Here we report how the optical emission (photoluminescence) of a single quantum ring changes as electrons are added one-by-one. We find that the emission energy changes abruptly whenever an electron is added to the artificial atom, and that the sizes of the jumps reveal a shell structure.
We have measured the vertical Stark effect of excitons confined to individual self-assembled ring-shaped quantum dots. We find that the excitons have very large permanent dipole moments corresponding to electronhole separations up to 2.5 nm, comparable to the nanostructures' physical height. We find a trend of both permanent dipole moment and polarizability on the emission energy, but a very strong correlation between the permanent dipole moment and the polarizability.
We present results on the influence of a magnetic field on excitons in semiconductor quantum dots, concentrating on the diamagnetic curvature. We use samples with a bimodal ensemble photoluminescence ͑PL͒ and we find that for the low-energy PL branch, the diamagnetic curvature is independent of charge, yet for the high-energy branch, the diamagnetic curvature is strongly reduced with excess charge. Guided by model calculations, we interpret the two classes as typical of the strong and intermediate confinement regimes. In the light of this, we predict that in the weak confinement regime the excitonic diamagnetic shift is strongly dependent on surplus charge, corresponding to a reversal in sign of the conventional diamagnetic shift for neutral excitons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.