This research work aims to provide an AR training system adapted to industry,
by addressing key challenges identified during a long-term case study
conducted in a boiler-manufacturing factory. The proposed system relies on
low-cost visual assets (i.e. text, image, video and predefined auxiliary
content) and requires solely a head-mounted display (HMD) device (i.e.
Hololens 2) for both authoring and training. We evaluate our proposal in a
real-world use case by conducting a field study and two field experiments,
involving 5 assembly workstations and 30 participants divided into 2 groups:
(i) low-cost group (G-LA) and (ii) computer-aided design (CAD)-based group
(G-CAD). The most significant findings are as follows. The error rate of
2.2% reported by G-LA during the first assembly cycle (WEC) suggests that
low-cost visual assets are sufficient for effectively delivering manual
assembly expertise via AR to novice workers. Our comparative evaluation
shows that CAD-based AR instructions lead to faster assembly (-7%, -18% and
-24% over 3 assembly cycles) but persuade lower user attentiveness,
eventually leading to higher error rates (+38% during the WEC). The overall
decrease of the instructions reading time by 47% and by 35% in the 2nd and
3rd assembly cycles, respectively, suggest that participants become less
dependent on the AR instructions rapidly. By considering these findings, we
question the worthiness of authoring CAD-based AR instructions in similar
industrial use cases.