The BiOI/NH2-MIL-125(Ti) composite photocatalyst with excellent photocatalytic performance was prepared by the solvothermal method. For the BiOI/NH2-MIL-125(Ti) (BNMT) system, the contents of NH2-MIL-125(Ti) in BNMT-4, BNMT-5, BNMT-7, BNMT-9, and BNMT-10 were 4 wt %, 5 wt %, 7 wt %, 9 wt %, and 10 wt %, respectively. XRD, XPS, SEM, and TEM characterizations indicated that BiOI/NH2-MIL-125(Ti) was successfully prepared. Brunauer, Emmett, and Teller (BET) and UV–vis diffuse reflectance spectra photoelectrochemical analysis indicated that BNMT-9 can make the specific surface area and photo absorption region larger than BiOI. In addition, the separation efficiency of photogenerated carriers was improved, and the recombination efficiency was reduced. The degradation percentages of Rhodamine B (RhB) and p-chlorophenol (P-CP) reached 99% and 90% over BNMT-9 under visible light irradiation. Additionally, the catalysts had high stability. The results of the active spices trapping experiments test indicated that h+ was the main active species. The possible degradation mechanism was proposed.