The phototherapy is one of the widely accepted noninvasive clinical methodologies to eradicate cancer cells owing to its minimal side effects and high selectivity to the light of specific wavelength. As represented by photodynamic (PD) and photothermal (PT) therapy, the phototherapy requires light and photosensitizer to generate reactive oxygen species and heat, respectively. Zinc phthalocyanine (ZnPc) is one of the promising photosensitizers as it has a strong absorption cross-section in the spectral range of 650-900 nm that guarantees maximum tissue penetration. One critical issue in using Pc molecule, including ZnPc as a biocompatible sensitizer is the poor water solubility. To increase water solubility, various chemical modifications inducing hydrophilicity have been widely attempted to introduce various functional groups in the ZnPc backbone. We report that ZnPc nanowires (NWs) directly grown from ZnPc powder by vaporization-condensation-recrystallization process show surprisingly increased water dispersibility without any functionalization. The ZnPc NW solution exhibits highly efficient dual PD and PT effects upon the irradiation of near infrared (808 nm) laser. The dual phototherapeutic effect of ZnPc NW is proven to enhance cytotoxic efficiency according to both in vitro and in vivo experimental results. NPG Asia Materials (2012) 4, e12; doi:10.1038/am.2012.22; published online 13 April 2012Keywords: nanowire; photosensitizer; phototherapy; Zinc phthalocyanine INTRODUCTION Phototherapy, represented by photodynamic therapy (PDT) and photothermal therapy (PTT), is an advanced modality for the treatment of malignant tumors as it is widely used for clinical cancer treatments. PDT selectively destroys neoplastic lesions using cytotoxic reactive oxygen species (ROS) generated by light activation of the photosensitizer. 1,2 One of the crucial factors determining the PDT efficacy is the photochemical and photophysical properties of the photosensitizer. 3,4 Currently, four main classes of photosensitizer, such as porphyrin derivatives, chlorins, porphycenes, and phthalocyanines (Pcs), have been approved by the U.S. Food and Drug Administration (FDA) for clinical applications against cancer. 5,6 Among these, metallo-phthalocyanine has attracted considerable interest, having a photodynamic (PD) property that can be readily tuned by the type of central metal ion and the functional groups introduced as a Pc ring substituent. Zinc phthalocyanine (ZnPc) is known to exhibit a high PD effect as it possesses a diamagnetic Zn(II) central metal ion whose d shell is fully occupied, by which the yield of triplet excited state with long lifetime essential for the generation of ROS becomes high. 7 Moreover, ZnPc has