Abstract:In space missions, during the long isolation at extreme conditions for human health, it is of paramount importance to monitor vital parameters. One such parameter is the breathing rate. Indeed, several factors can induce some breathing anomalies during the sleep, which may cause apnea episodes. In order to act timely with the right therapy, an early diagnosis is required. Conventional devices are usually uncomfortable since they require electrodes or probes in contact with the subject. An alternative way to perform this kind of measurement in a remote sensing modality is provided by a continuous wave bioradar operating in the microwave frequency band. This is an effective contactless tool for monitoring the respiratory activity through the measurement of chest deformation due to inhalation and exhalation. The radar emits a low power electromagnetic wave at a single frequency, which is reflected by the human chest. By measuring of the phase shift between the incident and reflected wave, it is possible to detect and monitor the respiratory rate. The main contribution of this work is concerned with a metrological characterization of the continuous wave bioradar; which is a topic not thoroughly assessed in the relevant literature. In particular, the bioradar measurements are also compared with data recorded by a spirometer, which is a standard medical device that measures the air volume inhaled and exhaled by the subject. The purpose of this study is the characterization of the measurement standard uncertainty to enable the assessment of the bioradar system performance.