2020
DOI: 10.48550/arxiv.2011.10549
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Graph Signal Recovery Using Restricted Boltzmann Machines

Abstract: We propose a model-agnostic pipeline to recover graph signals from an expert system by exploiting the content addressable memory property of restricted Boltzmann machine and the representational ability of a neural network. The proposed pipeline requires the deep neural network that is trained on a downward machine learning task with clean data, data which is free from any form of corruption or incompletion. We show that denoising the representations learned by the deep neural networks is usually more effectiv… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?