Abstract. Graphene nanoribbons (GNRs) physisorbed on a Au(111) surface can be picked up, lifted at one end, and made slide by means of the tip of an atomicforce microscope. The dynamical transition from smooth sliding to multiple stick-slip regimes, the pushing/pulling force asymmetry, the presence of pinning, and its origin are real frictional processes in a nutshell, in need of a theoretical description. To this purpose, we conduct classical simulations of frictional manipulations for GNRs up to 30 nm in length, one end of which is pushed or pulled horizontally while held at different heights above the Au surface. These simulations allow us to clarify theoretically the emergence of stick-slip originating from the short 1D edges rather than the 2D "bulk", the role of adhesion, of lifting, and of graphene bending elasticity in determining the GNR sliding friction. The understanding obtained in this simple context is of additional value for more general cases.