We address the atomistic nature of the longitudinal static friction against sliding of graphene nanoribbons (GNRs) deposited on gold, a system whose structural and mechanical properties have been recently the subject of intense experimental investigation. By means of numerical simulations and modeling we show that the GNR interior is structurally lubric ("superlubric") so that the static friction is dominated by the front/tail regions of the GNR, where the residual uncompensated lateral forces arising from the interaction with the underneath gold surface opposes the free sliding. As a result of this edge pinning the static friction does not grow with the GNR length, but oscillates around a fairly constant mean value. These friction oscillations are explained in terms of the GNR-Au(111) lattice mismatch: at certain GNR lengths close to an integer number of the beat (or moiré) length there is good force compensation and superlubric sliding; whereas close to half odd-integer periods there is significant pinning of the edge with larger friction. These results make qualitative contact with recent state-of-the-art atomic force microscopy experiment, as well as with the sliding of other different incommensurate systems.
Metal−surface physisorbed graphene nanoribbons (GNRs) constitute mobile nanocontacts whose interest is simultaneously mechanical, electronic, and tribological. Previous work showed that GNRs adsorbed on Au(111) generally slide smoothly and superlubrically owing to the incommensurability of their structures. We address here the nanomechanics of detachment, as realized when one end is picked up and lifted by an AFM cantilever. AFM nanomanipulations and molecular-dynamics (MD) simulations identify two successive regimes, characterized by (i) a progressively increasing local bending, accompanied by the smooth sliding of the adhered part, followed by (ii) a stick−slip dynamics involving sudden bending relaxation associated with intermittent jumps of the remaining adhered GNR segment and tail end. AFM measurements of the vertical force exhibit oscillations which, compared with MD simulations, can be associated with the successive detachment of individual GNR unit cells of length 0.42 nm. Extra modulations within one single period are caused by steplike advancements of the stillphysisorbed part of the GNR. The sliding of the incommensurate moirépattern that accompanies the GNR lifting generally yields an additional long-period oscillation: while almost undetectable when the GNR is aligned in the standard "R30" orientation on Au(111), we predict that such feature should become prominent in the alternative rotated "R0" orientation on the same surface, or on a different surface, such as perhaps Ag(111).
Abstract. Graphene nanoribbons (GNRs) physisorbed on a Au(111) surface can be picked up, lifted at one end, and made slide by means of the tip of an atomicforce microscope. The dynamical transition from smooth sliding to multiple stick-slip regimes, the pushing/pulling force asymmetry, the presence of pinning, and its origin are real frictional processes in a nutshell, in need of a theoretical description. To this purpose, we conduct classical simulations of frictional manipulations for GNRs up to 30 nm in length, one end of which is pushed or pulled horizontally while held at different heights above the Au surface. These simulations allow us to clarify theoretically the emergence of stick-slip originating from the short 1D edges rather than the 2D "bulk", the role of adhesion, of lifting, and of graphene bending elasticity in determining the GNR sliding friction. The understanding obtained in this simple context is of additional value for more general cases.
The lifting, peeling and exfoliation of physisorbed ribbons (or flakes) of 2D material such as graphene off a solid surface are common and important manoeuvres in nanoscience. The feature that makes this case peculiar is the structural lubricity generally realized by stiff 2D material contacts. We model theoretically the mechanical peeling of a nanoribbon of graphene as realized by the tip-forced lifting of one of its extremes off a flat crystal surface. The evolution of shape, energy, local curvature and body advancement are ideally expected to follow a succession of regimes: (A) initial prying, (B) peeling with stretching but without sliding (stripping), (C) peeling with sliding, (D) liftoff. In the case where in addition the substrate surface corrugation is small or negligible, then (B) disappears, and we find that the (A)-(C) transition becomes universal, analytical and sharp, determined by the interplay between bending rigidity and adsorption energy. This general two-stage peeling transition is identified as a sharp crossover in published data of graphene nanoribbons pulled off an atomic-scale Au(111) substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.