Robots at present are involved in many parts of life, especially mobile robots, which are two parts, ground robots and flying robots, and the best example of a flying robot is the drone. Path planning is a fundamental part of UAVs because the drone follows the path that leads it to goal with obstacle avoidance. Therefore, this paper proposes a hybrid algorithm (grey wolf optimizationintelligent bug algorithm (GWO-IBA)) to determine the best, shortest and without obstacles path. The hybrid algorithm was implemented and tested in the MATLAB program on the Tri-copter model, and it gave different paths in different environments. The paths obtained were characterized by being free of obstacles and the shortest paths available to reach the target.