The motility of microalgae has been studied extensively, particularly in model microorganisms such as Chlamydomonas reinhardtii. For this and other microalgal species, diurnal cycles are well-known to control the metabolism, growth and cell division. Diurnal variations, however, have been largely neglected in quantitative studies of motility. Here, we demonstrate using tracking microscopy how the motility statistics of C. reinhardtii are modulated by diurnal cycles. We discovered that the mean swimming speed is greater during the dark period of a diurnal cycle. From this measurement, using a hydrodynamic power balance, we conjecture that this is a result of the mean flagellar beat frequency being modulated by the flagellar ATP. Our measurements also quantify the diurnal variations of the orientational and gravitactic transport of C. reinhardtii. We discuss the implications of our frequency results in the context of cellular bioenergetics. Further, we explore the population-level consequences of diurnal variations of motility statistics by evaluating a prediction for how the gravitactic steady state changes with time during a diurnal cycle. SIGNIFICANCE We report tracking microscopy measurements which demonstrate that the mean swimming speed of C. reinhardtii is significantly greater during the dark period of a diurnal cycle. Using hydrodynamic (low Reynolds number) power balance, we also inferred the mean flagellar beat frequency from the swimming speed, hypothesising that the observed variations in this frequency correlate with the diurnal regulation of flagellar ATP. Diurnal variations of the orientational and gravitactic transport of C. reinhardtii were also quantified and used in a continuum model to predict that, at the population scale, the steady state vertical distribution of C. reinhardtii is broader during the dark period. Our findings could have significant implications for microalgal biotechnologies, e.g. microalgal harvesting, and plankton migration in the ocean.