A single-molecule imaging study reveals that heparan sulfate chains in the pericellular matrix present a structured network of binding sites that controls FGF2 transport.
We compare the results of two-dimensional, biased random walk models of individual swimming micro-organisms with advection-diffusion models for the whole population. In particular, we consider the influence of the local flow environment (gyrotaxis) on the resulting motion. In unidirectional flows, the results of the individual and population models are generally in good agreement, even in flows in which the cells can experience a range of shear environments, and both models successfully predict the phenomena of gravitactic focusing. Numerical results are also compared with asymptotic expressions for weak and strong shear. Discrepancies between the models arise in two cases: (i) when reflective boundary conditions change the orientation distribution in the random walk model from that predicted by the long-term asymptotics used to derive the advection-diffusion model; (ii) when the spatial and temporal scales are not large enough for the advection-diffusion model to apply. We also use a simple twodimensional flow containing a variety of flow regimes to explore what happens when there are localized regions in which the generalized Taylor dispersion theory used in the derivation of the population model does not apply. For spherical cells, we find good agreement between the models outside the 'break-down' regions, but comparison of the results within these regions is complicated by the presence of nearby boundaries and their influence on the random walk model. In contrast, for rod-shaped cells which are reorientated by both vorticity and strain, we see qualitatively different spatial patterns between individual and advection-diffusion models even in the absence of gyrotaxis, because cells are advected between regions of differing rates of strain.
There is much current interest in modelling suspensions of algae and other microorganisms for biotechnological exploitation, and many bioreactors are of tubular design. Using generalized Taylor dispersion theory, we develop a population-level swimming-advection-diffusion model for suspensions of micro-organisms in a vertical pipe flow. In particular, a combination of gravitational and viscous torques acting on individual cells can affect their swimming behaviour, which is termed gyrotaxis. This typically leads to local cell drift and diffusion in a suspension of cells. In a flow in a pipe, small amounts of radial drift across streamlines can have a major impact on the effective axial drift and diffusion of the cells. We present a Galerkin method to calculate the local mean swimming velocity and diffusion tensor based on local shear for arbitrary flow rates. This method is validated with asymptotic results obtained in the limits of weak and strong shear. We solve the resultant swimming-advectiondiffusion equation using numerical methods for the case of imposed Poiseuille flow and investigate how the flow modifies the dispersion of active swimmers from that of passive scalars. We establish that generalized Taylor dispersion theory predicts an enhancement of gyrotactic focussing in pipe flow with increasing shear strength, in contrast to earlier models. We also show that biased swimming cells may behave very differently to passive tracers, drifting axially at up to twice the rate and diffusing much less.
Background: Hypoxia inducible factor-α (HIF-α) is the main transcription factor activated in low oxygen conditions.Results: Single cell imaging reveals pulses in nuclear levels of HIF-α.Conclusion: The transient nature of the HIF-α nuclear accumulation is required to avoid cell death.Significance: The duration of HIF-α response depends on cellular oxygenation, and can encode information and dictate cell fate.
Suspensions of microswimmers are a rich source of fascinating new fluid mechanics. Recently we predicted the active pipe flow dispersion of gyrotactic microalgae, whose orientation is biased by gravity and flow shear. Analytical theory predicts that these active swimmers disperse in a markedly distinct manner from passive tracers (Taylor dispersion). Dispersing swimmers display nonzero drift and effective diffusivity that is non-monotonic with Péclet number. Such predictions agree with numerical simulations, but hitherto have not been tested experimentally. Here, to facilitate comparison, we obtain new solutions of the axial dispersion theory accounting both for swimmer negative buoyancy and a local nonlinear response of swimmers to shear, provided by two alternative microscopic stochastic descriptions. We obtain new predictions for suspensions of the model swimming alga Dunaliella salina, whose motility and buoyant mass we parametrise using tracking video microscopy. We then present a new experimental method to measure gyrotactic dispersion using fluorescently stained D. salina and provide a preliminary comparison with predictions of a nonzero drift above the mean flow for each microscopic stochastic description. Finally, we propose further experiments for a full experimental characterisation of gyrotactic dispersion measures and discuss implications of our results for algal dispersion in industrial photobioreactors.Key words: Authors should not enter keywords on the manuscript, as these must be chosen by the author during the online submission process and will then be added during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfmkeywords.pdf for the full list)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.