We present a fast, high-throughput method for characterizing the motility of microorganisms in three dimensions based on standard imaging microscopy. Instead of tracking individual cells, we analyze the spatiotemporal fluctuations of the intensity in the sample from time-lapse images and obtain the intermediate scattering function of the system. We demonstrate our method on two different types of microorganisms: the bacterium Escherichia coli (both smooth swimming and wild type) and the biflagellate alga Chlamydomonas reinhardtii. We validate the methodology using computer simulations and particle tracking. From the intermediate scattering function, we are able to extract the swimming speed distribution, fraction of motile cells, and diffusivity for E. coli, and the swimming speed distribution, and amplitude and frequency of the oscillatory dynamics for C. reinhardtii. In both cases, the motility parameters were averaged over ∼10(4) cells and obtained in a few minutes.
Interfacial hydrodynamic instabilities arise in a range of chemical systems. One mechanism for instability is the occurrence of unstable density gradients due to the accumulation of reaction products. In this paper we conduct two-dimensional nonlinear numerical simulations for a member of this class of system: the methyleneblue-glucose reaction. The result of these reactions is the oxidation of glucose to a relatively, but marginally, dense product, gluconic acid, that accumulates at oxygen permeable interfaces, such as the surface open to the atmosphere. The reaction is catalyzed by methylene-blue. We show that simulations help to disassemble the mechanisms responsible for the onset of instability and evolution of patterns, and we demonstrate that some of the results are remarkably consistent with experiments. We probe the impact of the upper oxygen boundary condition, for fixed flux, fixed concentration, or mixed boundary conditions, and find significant qualitative differences in solution behavior; structures either attract or repel one another depending on the boundary condition imposed. We suggest that measurement of the form of the boundary condition is possible via observation of oxygen penetration, and improved product yields may be obtained via proper control of boundary conditions in an engineering setting. We also investigate the dependence on parameters such as the Rayleigh number and depth. Finally, we find that pseudo-steady linear and weakly nonlinear techniques described elsewhere are useful tools for predicting the behavior of instabilities beyond their formal range of validity, as good agreement is obtained with the simulations.
There is much current interest in modelling suspensions of algae and other microorganisms for biotechnological exploitation, and many bioreactors are of tubular design. Using generalized Taylor dispersion theory, we develop a population-level swimming-advection-diffusion model for suspensions of micro-organisms in a vertical pipe flow. In particular, a combination of gravitational and viscous torques acting on individual cells can affect their swimming behaviour, which is termed gyrotaxis. This typically leads to local cell drift and diffusion in a suspension of cells. In a flow in a pipe, small amounts of radial drift across streamlines can have a major impact on the effective axial drift and diffusion of the cells. We present a Galerkin method to calculate the local mean swimming velocity and diffusion tensor based on local shear for arbitrary flow rates. This method is validated with asymptotic results obtained in the limits of weak and strong shear. We solve the resultant swimming-advectiondiffusion equation using numerical methods for the case of imposed Poiseuille flow and investigate how the flow modifies the dispersion of active swimmers from that of passive scalars. We establish that generalized Taylor dispersion theory predicts an enhancement of gyrotactic focussing in pipe flow with increasing shear strength, in contrast to earlier models. We also show that biased swimming cells may behave very differently to passive tracers, drifting axially at up to twice the rate and diffusing much less.
Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design.
Suspensions of microswimmers are a rich source of fascinating new fluid mechanics. Recently we predicted the active pipe flow dispersion of gyrotactic microalgae, whose orientation is biased by gravity and flow shear. Analytical theory predicts that these active swimmers disperse in a markedly distinct manner from passive tracers (Taylor dispersion). Dispersing swimmers display nonzero drift and effective diffusivity that is non-monotonic with Péclet number. Such predictions agree with numerical simulations, but hitherto have not been tested experimentally. Here, to facilitate comparison, we obtain new solutions of the axial dispersion theory accounting both for swimmer negative buoyancy and a local nonlinear response of swimmers to shear, provided by two alternative microscopic stochastic descriptions. We obtain new predictions for suspensions of the model swimming alga Dunaliella salina, whose motility and buoyant mass we parametrise using tracking video microscopy. We then present a new experimental method to measure gyrotactic dispersion using fluorescently stained D. salina and provide a preliminary comparison with predictions of a nonzero drift above the mean flow for each microscopic stochastic description. Finally, we propose further experiments for a full experimental characterisation of gyrotactic dispersion measures and discuss implications of our results for algal dispersion in industrial photobioreactors.Key words: Authors should not enter keywords on the manuscript, as these must be chosen by the author during the online submission process and will then be added during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfmkeywords.pdf for the full list)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.