Background and Aims. Abnormal expression of lncRNAs is relevant to the occurrence and development of gastric cancer (GC), but the significance remains inconclusive. We performed a diagnostic meta-bioinformatics analysis to elucidate the association between lncRNA expression and GC risk. Methods. Published datasets were selected from PubMed, Embase, CNKI, and Web of Science, up to 1st December 2021. The pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated to evaluate the diagnostic value. RNA sequencing data were downloaded for validation. Results. 54 studies with 4671 patients and 4652 matched controls were included in the meta-analysis. The pooled SEN, SPE, PLR, NLR, DOR, and AUC were 0.71, 0.76, 2.9, 0.39, 8, and 0.79, respectively. Subgroup analyses showed that the DOR and AUC of intergenic lncRNAs, circulating lncRNAs, larger sample size (>200), and high-quality (
NOS
score
≥
7
) groups were superior to antisense lncRNAs, tissue lncRNAs, smaller sample size (≤200), and low-quality (
NOS
score
<
7
) groups, respectively. However, only circulating lncRNAs had significantly higher diagnostic utility than that tissue lncRNAs. Nine differentially expressed lncRNAs in the meta-analysis were verified in TCGA-STAD. PVT1 was the most effective single lncRNA, with AUC of 0.949, SEN of 0.808, and SPE of 0.969, while PVT1 and C5orf66-AS1 were the most effective combination, with AUC of 0.972, SEN of 0.941, and SPE of 0.937. Conclusion. Abnormally expressed lncRNAs, especially circulating lncRNAs, might be potential diagnostic biomarkers for GC risk. A novel combined model of lncRNAs might achieve better GC diagnosis performance.