Preserving a system's viability in the presence of diversity erosion is critical if the goal is to sustainably support biodiversity. Reduction in population heterogeneity, whether inter-or intraspecies, may increase population fragility, either decreasing its ability to adapt e ectively to environmental changes or facilitating the survival and success of ordinarily rare phenotypes. The latter may result in over-representation of individuals who may participate in resource utilization patterns that can lead to over-exploitation, exhaustion, and, ultimately, collapse of both the resource and the population that depends on it. Here, we aim to identify regimes that can signal whether a consumer-resource system is capable of supporting viable degrees of heterogeneity. The framework used here is an expansion of a previously introduced consumer-resource type system of a population of individuals classi ed by their resource consumption. Application of the Reduction Theorem to the system enables us to evaluate the health of the system through tracking both the mean value of the parameter of resource (over)consumption, and the population variance, as both change over time. The article concludes with a discussion that highlights applicability of the proposed system to investigation of systems that are a ected by particularly devastating overly-adapted populations, namely, cancerous cells. Potential intervention approaches for system management are discussed in the context of cancer therapies.