This paper presents an implementation of selective harmonic elimination (SHE) modulation for a single-phase 13-level transistor-clamped H-bridge (TCHB) based cascaded multilevel inverter. To determine the optimum switching angle of the SHE equations, the Newton-Raphson method is used in solving the transcendental equation describing the fundamental and harmonic components. The proposed SHE scheme used the relationship between the angles and a sinusoidal reference waveform based on voltage-angle equal criteria. The proposed SHE scheme is evaluated through simulation and experimental results. The digital modulator based-SHE scheme using a field-programmable gate array (FPGA) is described and has been implemented on an Altera DE2 board. The proposed SHE is efficient in eliminating the 3 rd , 5 th , 7 th , 9 th and 11 th order harmonics, which validates the analytical results. From the results, it can be seen that the adopted 13-level inverter produces a higher quality with a better harmonic profile and sinusoidal shape of the stepped output waveform.