Motivated by two norm equations used to characterize the Friedrichs angle, this paper studies C * -isomorphisms associated with two projections by introducing the matched triple and the semi-harmonious pair of projections. A triple (P, Q, H) is said to be matched if H is a Hilbert C * -module, P and Q are projections on H such that their infimum P ∧ Q exists as an element of L(H), where L(H) denotes the set of all adjointable operators on H. The C * -subalgebras of L(H) generated by elements in {P − P ∧ Q, Q − P ∧ Q, I} and {P, Q, P ∧ Q, I} are denoted by i(P, Q, H) and o(P, Q, H), respectively. It is proved that each faithful representation (π, X) of o(P, Q, H) can induce a faithful representation ( π, X) of i(P, Q, H) such thatWhen (P, Q) is semi-harmonious, that is, R(P + Q) and R(2I − P − Q) are both orthogonally complemented in H, it is shown that i(P, Q, H) and i(I − Q, I − P, H) are unitarily equivalent via a unitary operator in L(H). A counterexample is constructed, which shows that the same may be not true when (P, Q) fails to be semi-harmonious. Likewise, a counterexample is constructed such that (P, Q) is semi-harmonious, whereas (P, I − Q) is not semi-harmonious. Some additional examples indicating new phenomena of adjointable operators acting on Hilbert C * -modules are also provided.