1949
DOI: 10.1002/zamm.19490290301
|View full text |Cite
|
Sign up to set email alerts
|

Hauptaufsätze: Verzerrungstensor, Verzerrungsdeviator und Spannungstensor bei endlichen Formänderungen

Abstract: Es werden Postulate aufgestellt, denen bei der Bildung des Verzerrungstensors, des Verzerrungsdeviate und des Spannungstensors zu genügen ist, und hieraus die allgemeine Gestalt dieser Tensoren in beliebige Koordinaten abgeleitet. Als einfachste Definition des Verzerrungstensors erscheint die gemischt‐variable logarithmische Deformationsmatrix, wo der Deviator in üblicher Weise gebildet werden kann, und wo die varianten des letzteren die Beanspruchung invariant charakterisieren. Bei entsprechender Definition d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
23
0

Year Published

1960
1960
2014
2014

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 27 publications
(23 citation statements)
references
References 1 publication
0
23
0
Order By: Relevance
“…The logarithmic strain tensors in (6) play a central role in the theory of finite deformation because they can be decomposed into a sum of an isochoric distortion and a volume change (Betten, 2001;Fitzgerald, 1980;Richter, 1949); The problem to represent logarithmic strain tensors as isotropic tensor functions can be solved by utilizing the interpolation method developed by Betten (1984Betten ( , 1989Betten ( , 2001. The isochoric deformation is defined by the condition that volumes are unaltered.…”
Section: Multiplicative Decompositionmentioning
confidence: 99%
“…The logarithmic strain tensors in (6) play a central role in the theory of finite deformation because they can be decomposed into a sum of an isochoric distortion and a volume change (Betten, 2001;Fitzgerald, 1980;Richter, 1949); The problem to represent logarithmic strain tensors as isotropic tensor functions can be solved by utilizing the interpolation method developed by Betten (1984Betten ( , 1989Betten ( , 2001. The isochoric deformation is defined by the condition that volumes are unaltered.…”
Section: Multiplicative Decompositionmentioning
confidence: 99%
“…which can be decomposed into a sum of an isochoric distortion part and a part of volume change (RICHTER, 1949). The definitions (5.13a,b) combined with (5.11a,b) lead to:…”
Section: Methods To Discribe the Kinematicsmentioning
confidence: 99%
“…which can be decomposed into a sum of an isochoric distortion part and a part of volume change (RICHTER, 1949). The definitions (5.…”
Section: Methods To Discribe the Kinematicsmentioning
confidence: 99%
“…The isochoric deformation is defined by the condition that volumes are unaltered. The change in volume can be expressed by the trace of the logarithmical strain tensor (RICHTER, 1949;BETTEN, 2001a). From (5.13a,b) we therefore have the necessary and sufficient local conditions for an isochoric deformation…”
Section: Isochoric Creep Behaviormentioning
confidence: 99%