1980
DOI: 10.2307/2042517
|View full text |Cite
|
Sign up to set email alerts
|

Having a Small Weight is Determined by the Small Subspaces

Abstract: Abstract. We show that for every cardinal k > <•> and an arbitrary topological space AT if we have w(Y) < k whenever Y c X and | Y\ < k then w(X) < k as well. M. G. Tkacenko proved this for T3 spaces in [2]. We also prove an analogous statement for the «--weight if k is regular.The main aim of this paper is to prove the following result.Theorem. Let X be an arbitrary topological space and k > a a (regular) cardinal. If w'Y) < k (it(Y) < k) holds whenever Y c X and \Y\ < k then w(X) < k (ir(X) Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
2
0
4

Year Published

2011
2011
2015
2015

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(6 citation statements)
references
References 0 publications
0
2
0
4
Order By: Relevance
“…The first systematic study of reflection theorems for cardinal functions was done by Hodel and Vaughan in [8], after some studies done by Tkačenko in [17], Juhász in [10], and the result of Hajnal and Juhász in [6] that the weight reflects all infinite cardinals, among others. Hodel and Vaughan give in [8] the following definition: Definition 1.1 ([8]).…”
Section: Introductionmentioning
confidence: 99%
“…The first systematic study of reflection theorems for cardinal functions was done by Hodel and Vaughan in [8], after some studies done by Tkačenko in [17], Juhász in [10], and the result of Hajnal and Juhász in [6] that the weight reflects all infinite cardinals, among others. Hodel and Vaughan give in [8] the following definition: Definition 1.1 ([8]).…”
Section: Introductionmentioning
confidence: 99%
“…Provemos que ω ⊆ M; para tanto, provaremos que M é um conjunto indutivo 16 . Temos, do axioma da existência do conjunto vazio, que…”
Section: Submodelos Elementaresunclassified
“…e, da unicidade do conjunto vazio -garantida pelo axioma da extensionalidade -, segue que Procedamos agora às construções de submodelos elementares de H θ que utilizaremos nesta dissertação. Note que, ao obtermos um submodelo elementar M de H θ utilizando apenas o 16 Um conjunto I é dito indutivo se, e somente se, ∅ ∈ I e, para todo x ∈ I, tem-se que x ∪ {x} ∈ I.…”
Section: Submodelos Elementaresunclassified
See 1 more Smart Citation
“…Os primeiros estudos sobre re ‡exão de funções cardinais e conceitos relacionados foram realizados por Tkaµ cenko [43] e Juhász [24]. Um marco importante neste tópico foi o Teorema de Hajnal e Juhász de re ‡exão do peso [20]. Posteriormente, outra contribuição importante foi o Teorema de Dow de re ‡exão da metrizabilidade [11] [10], não apenas pelo resultado, mas pela introdução da técnica de submodelos elementares em problemas de Topologia Geral.…”
Section: Teoremaunclassified