Leptin action on its receptor (LEPR) stimulates energy expenditure and reduces food intake, thereby lowering body weight. One leptin-sensitive target cell mediating these effects on energy balance is the proopiomelanocortin (POMC) neuron. Recent evidence suggests that the action of leptin on POMC neurons regulates glucose homeostasis independently of its effects on energy balance. Here, we have dissected the physiological impact of direct leptin action on POMC neurons using a mouse model in which endogenous LEPR expression was prevented by a LoxP-flanked transcription blocker (loxTB), but could be reactivated by Cre recombinase. Mice homozygous for the Lepr loxTB allele were obese and exhibited defects characteristic of LEPR deficiency. Reexpression of LEPR only in POMC neurons in the arcuate nucleus of the hypothalamus did not reduce food intake, but partially normalized energy expenditure and modestly reduced body weight. Despite the moderate effects on energy balance and independent of changes in body weight, restoring LEPR in POMC neurons normalized blood glucose and ameliorated hepatic insulin resistance, hyperglucagonemia, and dyslipidemia.Collectively, these results demonstrate that direct leptin action on POMC neurons does not reduce food intake, but is sufficient to normalize glucose and glucagon levels in mice otherwise lacking LEPR.
IntroductionLeptin is an adipose-derived hormone that acts on its cognate receptors (LEPR) expressed by multiple neuronal groups in distinct areas of the brain (1). The canonical effect of leptin action in the brain is to regulate food intake and energy expenditure and thus body weight (2-4). In addition, leptin regulates several other physiological processes, including hepatic glucose production, insulin action, and glucagon levels (5-10). It is still unclear, however, which neurons mediate the varied physiological effects of leptin.One population of neurons targeted by leptin is proopiomelanocortin (POMC) cells in the arcuate nucleus of the hypothalamus (ARH) and nucleus of the solitary tract (NTS) (2, 3). Leptin action on POMC neurons in the ARH is considered a prototypical site of action in the control of energy balance. This view is partly based on results showing that loss of LEPR in POMC neurons increases body weight (8,11,12). Conversely, LEPR reexpression in the ARH (13), overexpression in the ARH (14-17), and transgenic expression in POMC neurons (18) lower body weight. Interestingly, these latter studies also show lowered blood glucose, suggesting that leptin-sensitive POMC neurons in the ARH directly modulate metabolism (13-18). In the current study, we developed what we believe to be a novel LEPR-null mouse model in which endogenous LEPR expression can be reexpressed in cells that normally express leptin receptors. Here, we reexpress LEPR only in POMC neurons to delineate the physiological effects on energy and metabolic homeostasis.