2012
DOI: 10.1016/j.eswa.2012.05.025
|View full text |Cite
|
Sign up to set email alerts
|

Heuristics for two-dimensional knapsack and cutting stock problems with items of irregular shape

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
36
0
15

Year Published

2013
2013
2019
2019

Publication Types

Select...
4
2
2

Relationship

0
8

Authors

Journals

citations
Cited by 48 publications
(51 citation statements)
references
References 20 publications
0
36
0
15
Order By: Relevance
“…The problems of Blaz1, Jakobs1, and Jakobs2 have good solutions, for example, Valle et al 26 give PD with 98.7%, 91.8%, and 98.7%, respectively. So does Elkeran 27 on the problems of Jakobs1 and Jakobs2.…”
Section: One Set Of Benchmark Problemsmentioning
confidence: 99%
“…The problems of Blaz1, Jakobs1, and Jakobs2 have good solutions, for example, Valle et al 26 give PD with 98.7%, 91.8%, and 98.7%, respectively. So does Elkeran 27 on the problems of Jakobs1 and Jakobs2.…”
Section: One Set Of Benchmark Problemsmentioning
confidence: 99%
“…Os itens devem estar totalmente contidos no recipiente e nenhum item pode se sobrepor a outro. Trabalhos recentes que envolvem variações do problema da mochila podem ser encontrados em Del Valle (2010), Del Valle et al (2012), Mundim e Queiroz (2012), Silveira (2013) e Dalalah et al (2014). Del Valle (2010) propôs um algoritmo híbrido para o problema da mochila irrestrita e uma heurística baseada em GRASP para o 2PMI.…”
unclassified
“…Este custo depende da ocupação retangular e daárea da envoltória retangular do empacotamento corrente. Del Valle et al (2012) utilizaram as mesmas abordagens de (Del Valle, 2010) e obtiveram resultados para um outro problema, o de corte de estoque bidimensional. Mundim e Queiroz (2012) resolveram o 2PMI com um algoritmo híbrido, envolvendo GRASP com recozimento simulado.…”
unclassified
See 1 more Smart Citation
“…At each iteration of their algorithm, the placement heuristic is based on the contact region among the pieces and the genetic algorithm is responsible to improve the solution quality. Valle et al (2012) proposed heuristics for the irregular binary knapsack problem and the irregular unconstrained knapsack problem. To solve the irregular binary knapsack problem, a GRASP heuristic is combined with a constructive heuristic in order to obtain solutions for the problem.…”
Section: Heuristic Methodsmentioning
confidence: 99%