SUMMARYThis paper presents an architecture and a synthesis method for compact numerical function generators (NFGs) for trigonometric, logarithmic, square root, reciprocal, and combinations of these functions. Our NFG partitions a given domain of the function into non-uniform segments using an LUT cascade, and approximates the given function by a quadratic polynomial for each segment. Thus, we can implement fast and compact NFGs for a wide range of functions. Experimental results show that: 1) our NFGs require, on average, only 4% of the memory needed by NFGs based on the linear approximation with non-uniform segmentation; 2) our NFG for 2 x − 1 requires only 22% of the memory needed by the NFG based on a 5th-order approximation with uniform segmentation; and 3) our NFGs achieve about 70% of the throughput of the existing table-based NFGs using only a few percent of the memory. Thus, our NFGs can be implemented with more compact FPGAs than needed for the existing NFGs. Our automatic synthesis system generates such compact NFGs quickly.