“…Since the experimental demonstration in 1994 [1] , with continuous optimization in structure design, material quality, and device processing, the performances of quantum cascade lasers (QCLs) have been greatly improved in terms of high output power, low power consumption, wide spectral coverage, and other characteristics [2][3][4] . QCLs have now become superb and versatile laser sources in the mid-infrared spectral region with a wide range of applications, such as chemical sensing, free space optical communication, high-resolution spectroscopy, and medical diagnosis [5][6][7] .…”