“…This naming method was subsequently adopted by most researchers [42][43][44][45][46]. Owing to their specific structural features such as large specific surface areas, high porosity, well-defined crystallinity, and increased numbers of active sites, MOFs have been widely used in gas adsorption and separation [47,48], fluorescence [49], sensing [44,45,[50][51][52], ion conductivity [53], optoelectronics [54], thermal catalysis [55][56][57][58][59], electrocatalysis [60,61], photocatalysis [41,[62][63][64], and so on. As photocatalysts, MOFs have many advantages: (i) the large specific surface area and highly ordered pore structure contribute to the mass transfer of reactants; (ii) the adjustable ligands make MOFs possess the ability to harvest light in a wide range; (iii) introducing defects into MOFs can expose more active sites, enhancing their nitrogen fixation activity [65][66][67][68].…”