Most of the existing and foreseen complex networks, such as the Internet, are operated and built by thousands of large and small entities (autonomous agents), which collaborate to process and deliver end-to-end flows originating from and terminating at any of them. The distributed nature of the Internet implies a lack of coordination among its users. Instead, each user attempts to obtain maximum performance according to his own parameters and objectives.Methods from game theory and mathematical economics have been proven to be a powerful modeling tool, which can be applied to understand, control, and efficiently design such dynamic, complex networks. Game theory provides a good starting point for computer scientists in their endeavor to understand selfish rational behavior in complex networks with many agents (players). Such scenarios are readily modeled using techniques from game theory, where players with potentially conflicting goals participate in a common setting with well-prescribed interactions.Nash equilibrium [73,74] distinguishes itself as the predominant concept of rationality in noncooperative settings. So, game theory and its various concepts of equilibria provide a rich framework for modeling the behavior of selfish agents in these kinds of distributed or networked environments; they offer mechanisms to achieve efficient and desirable global outcomes in spite of the selfish behavior.Mechanism design, a subfield of game theory, asks how one can design systems so that agents' selfish behavior results to desired systemwide goals. Algorithmic mechanism design additionally considers computational tractability to the set of concerns of mechanism design. Work on algorithmic mechanism design has focused on the complexity of centralized implementations of game-theoretic mechanisms for distributed optimization problems. Moreover, in such huge and heterogeneous networks, each agent does not have access to (and may not process) complete information.
286
ALGORITHMIC GAME THEORY AND APPLICATIONSThe notion of bounded rationality for agents and the design of corresponding incomplete-information distributed algorithms have been successfully utilized to capture the aspect of lack of global knowledge in information networks.In this chapter, we review some of the most thrilling algorithmic problems and solutions, and corresponding advances, achieved on the account of game theory. The areas addressed are the following.Congestion games A central problem arising in the management of large-scale communication networks is that of routing traffic through the network. However, due to the large size of these networks, it is often impossible to employ a centralized traffic management. A natural assumption to make in the absence of central regulation is that network users behave selfishly and aim at optimizing their own individual welfare. One way to address this problem is to model this scenario as a noncooperative multiplayer game and formalize it using congestion game. Congestion games (either unweighted or weighted) offer ...