2019
DOI: 10.33238/rebecem.2019.v.3.n.3.23846
|View full text |Cite
|
Sign up to set email alerts
|

How does a fraction get its name?

Abstract: Philosophical and cultural perspectives shape how a fraction is named and defined. In turn, these perspectives have consequences for learners' conceptualization of fractions. We examine historical foundations of two perspectives of what are fractions—partitioning and measuring—and how these views influence fraction knowledge. For the dominant perspective, partitioning, we indicate how its approach to what is a fraction that discretizes objects and its well-meaning visual correlates cause learners a host of per… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 16 publications
0
2
0
2
Order By: Relevance
“…Instruction programs that introduce fractions with area models (e.g., segmented pie charts) have been criticized as they mislead children to think of fractions as parts of a whole and prompt them to use counting strategies (Obersteiner, Dresler, Bieck, & Moeller, 2019). As an alternative to the part-whole approach, a measurement perspective has been proposed (Davydov & Tsvetkovich, 1991;Powell, 2019;Wong & Evans, 2008). From this perspective, fractions serve as a more accurate measurement of a reference, specifically in those cases when the multiplicative relation between the reference and the measuring unit does not result in a whole number.…”
Section: Experimental and Educational Considerationsmentioning
confidence: 99%
See 1 more Smart Citation
“…Instruction programs that introduce fractions with area models (e.g., segmented pie charts) have been criticized as they mislead children to think of fractions as parts of a whole and prompt them to use counting strategies (Obersteiner, Dresler, Bieck, & Moeller, 2019). As an alternative to the part-whole approach, a measurement perspective has been proposed (Davydov & Tsvetkovich, 1991;Powell, 2019;Wong & Evans, 2008). From this perspective, fractions serve as a more accurate measurement of a reference, specifically in those cases when the multiplicative relation between the reference and the measuring unit does not result in a whole number.…”
Section: Experimental and Educational Considerationsmentioning
confidence: 99%
“…From this perspective, fractions serve as a more accurate measurement of a reference, specifically in those cases when the multiplicative relation between the reference and the measuring unit does not result in a whole number. In one practical example of this perspective (Powell, 2019), children start learning about proportions with physical, continuous…”
Section: Experimental and Educational Considerationsmentioning
confidence: 99%
“…À guisa de exemplo, o número fracionário "um meio" pode ser representado com os pares de barras branca e vermelha, vermelha e roxa, verde clara e verde escura, roxa e marrom, amarela e laranja (Figura 3). Com base nessa perspectiva de medição, uma fração é definida como uma comparação multiplicativa entre duas quantidades comensuráveis da mesma espécie (Powell, 2019a). Nesse sentido, para a apreensão do significado de magnitude entre duas frações, é indicada a compreensão de três propriedades de comparação.…”
Section: Fundamentação Conceitual E Teórica Das Frações Sob a Perspec...unclassified
“…Outras investigações apontam que a maneira mais indicada e favorável para compreensão do conceito de fração é a que remete à sua ontologia (Powell, 2018a;Siegler et al, 2011;Aytekin, 2020) e, alguns deles, remetem especificamente à ontologia de contextos de medição de quantidades por uma comparação multiplicativa de pares de magnitudes (Caraça, 1951;Vizcarra e Sallán, 2005;Powell, 2019a). Powell (2018a) defende que a perspectiva ontológica -aqui denominada de perspectiva de medição -ao remeter frações à sua origem histórica, contribui para o desenvolvimento do senso numérico de magnitude, ordem, equivalência e desigualdade de frações em crianças do Ensino Fundamental (6 a 8 anos), superando dificuldades de compreensões conceituais reveladas, por exemplo, na perspectiva de partição (e.g., Brousseau, 1983;Kerslake, 1986;Tzur, 1999;Vizcarra e Sallán, 2005), que emerge da divisão de coisas divisíveis.…”
Section: Introductionunclassified