One of the main goals of bone tissue engineering is to identify and develop new biomaterials and scaffolds for structural support and controlled cell growth, which allow for formation or replacement of bone tissue. Recently, carbon nanotubes (CNT) have emerged as a potential candidate for bone tissue engineering. CNT present remarkable mechanical, thermal, and electrical properties with easy functionalization capability and biocompatibility. In oral regenerative medicine, bone reconstruction is an essential requirement for functional rehabilitation of the stomatognathic system. Autologous bone still represents the gold standard graft material for bone reconstruction. However, the small amounts of bone available in donor regions, together with the high costs of surgeries, are critical aspects that hinder the selection of this procedure. Thus, CNT alone or combined with biopolymers have promise to be used as novel potential biomaterials for the restoration of bone defects. Indeed, recent evidence demonstrates CNT to be a feasible material that can increase the formation of bone in tooth sockets of rats. The purpose of this review is to summarize the recent developments in bone repair/regeneration with CNT or CNT-based composites. We further provide an overview of bone tissue engineering and current applications of biomaterials, especially of CNT, to enhance bone regeneration.