A better understanding of the control of body fat distribution and muscle development is of the upmost importance for both human and animal physiology. This requires a better knowledge of the features and physiology of adult stem cells in adipose tissue and skeletal muscle. Thus the objective of the current study was to determine the type and proportion of these cells in growing and adult pigs. The different cell subsets of stromal vascular cells isolated from these tissues were characterized by flow cytometry using cell surface markers (CD11b, CD14, CD31, CD34, CD45, CD56, and CD90). Adipose and muscle cells were predominantly positive for the CD34, CD56, and CD90 markers. The proportion of positive cells changed with age especially in intermuscular adipose tissue and skeletal muscle where the percentage of CD90+ cells markedly increased in adult animals. Further analysis using coimmunostaining indicates that eight populations with proportions ranging from 12 to 30% were identified in at least one tissue at 7 days of age, i.e., CD90+/CD34+, CD90+/CD34−, CD90+/CD56+, CD90+/CD56−, CD90−/CD56+, CD56+/CD34+, CD56+/CD34−, and CD56−/CD34+. Adipose tissues appeared to be a less heterogeneous tissue than skeletal muscle with two main populations (CD90+/CD34− and CD90+/CD56−) compared with five or more in muscle during the studied period. In culture, cells from adipose tissue and muscle differentiated into mature adipocytes in adipogenic medium. In myogenic conditions, only cells from muscle could form mature myofibers. Further studies are now needed to better understand the plasticity of those cell populations throughout life.