Clostridium perfringens is a medically important clostridial pathogen and an etiological agent causing several diseases in humans and animals. C. perfringens and its toxins have been listed as potential biological and toxin warfare (BTW) agents; thus, efforts to develop strategies for detection and protection are warranted. Fortyeight extracellular proteins of C. perfringens type A and type C strains have been identified here using a 2-dimensional gel electrophoresis-mass spectrometry (2-DE-MS) technique. The SagA protein, the DnaK-type molecular chaperone hsp70, endo-beta-N-acetylglucosaminidase, and hypothetical protein CPF_0656 were among the most abundant proteins secreted by C. perfringens ATCC 13124. The antigenic component of the exoproteome of this strain has also been identified. Most of the extracellular proteins were predicted to be involved in carbohydrate transport and metabolism (16%) or cell envelope biogenesis or to be outer surface protein constituents (13%). More than 50% of the proteins were predictably secreted by either classical or nonclassical pathways. LipoP and TMHMM indicated that nine proteins were extracytoplasmic but cell associated. Immunization with recombinant ornithine carbamoyltransferase (cOTC) clearly resulted in protection against a direct challenge with C. perfringens organisms. A significant rise in IgG titers in response to recombinant cOTC was observed in mice, and IgG2a titers predominated over IgG1 titers (IgG2a/IgG1 ratio, 2). The proliferation of spleen lymphocytes in cOTC-immunized animals suggested a cellular immune response. There were significant increases in the levels of gamma interferon (IFN-␥) and interleukin 2 (IL-2), suggesting a Th1 type immune response.