Abstract-Generalized coupled-line all-pass phasers, based on transversally-cascaded (TC), longitudinally-cascaded (LC) and hybrid-cascaded (HC) coupled transmission line sections, are presented and demonstrated using analytical, full-wave and experimental results. It is shown that for N commensurate coupled-line sections, LC and TC phasers exhibit N group delay peaks per coupled-line section harmonic frequency band, in contrast to the TC configuration, which exhibits only one peak within this band. It is also shown that for a given maximum achievable coupling-coefficient, the HC configuration provides the largest group delay swing. A wave-interference analysis is finally applied to the various coupled-line phasers, explaining their unique group delay characteristics based on physical wavepropagation mechanisms.Index Terms-Dispersion engineering, group delay engineering, phasers, C-sections, D-Sections, all-pass networks, radioanalog signal processing (R-ASP).