Three-dimensional
(3D) customized scaffolds are anticipated to
provide new frontiers in cell manipulation and advanced therapy methods.
Here, we demonstrate the application of hybrid 3D porous scaffolds,
representing networks of highly aligned self-assembled ceramic nanofibers,
for culturing four types of cancer cells. Ultrahigh aspect ratio (∼107) of graphene augmented fibers of tailored nanotopology is
shown as an alternative tool to substantially affect cancerous gene
expression, eventually due to differences in local biomechanical features
of the cell–matrix interactions. Here, we report a clear selective
up- and down-regulation of groups of markers for breast cancer (MDA-MB231),
colorectal cancer (CaCO2), melanoma (WM239A), and neuroblastoma (Kelly)
depending on only fiber orientation and morphology without application
of any other stimulus. Changes in gene expression are also revealed
for Mitomycin C treatment of MDA-MB231, making the scaffold a suitable
platform for testing of anticancer agents. This allows an opportunity
for selective “clean” guidance to a deep understanding
of mechanisms of cancer cells progressive growth and tumor formation
without possible side effects by manipulation with the specific markers.