A large number of studies have examined DNA storage to achieve information hiding in DNA sequences with DNA computing technology. However, most data hiding methods are irreversible in that the original DNA sequence cannot be recovered from the watermarked DNA sequence. This study presents reversible data hiding methods based on multilevel histogram shifting to prevent biological mutations, preserve sequence length, increase watermark capacity, and facilitate blind detection/recovery. The main features of our method are as follows. First, we encode a sequence of nucleotide bases with four-character symbols into integer values using the numeric order. Second, we embed multiple bits in each integer value by multilevel histogram shifting of noncircular type (NHS) and circular type (CHS). Third, we prevent the generation of false start/stop codons by verifying whether a start/stop codon is included in an integer value or between adjacent integer values. The results of our experiments confirmed that the NHSand CHS-based methods have higher watermark capacities than conventional methods in terms of supplementary data used for decoding. Moreover, unlike conventional methods, our methods do not generate false start/stop codons.