Purpose
The purpose of this study is to prepare trivalent chromium conversion (TCC) film on the Zn-Ni electrodeposited film on the surface of 2024 aluminum alloy and to ensure that the TCC film has good corrosion resistance and electrical conductivity.
Design/methodology/approach
The morphology of the TCC film was studied by scanning electron microscopy, and the elemental composition of the TCC film was characterized by X-ray energy dispersive spectroscopy. The TCC film was tested and the roughness was analyzed by 3D morphology (white light interference). The electrochemical behavior and corrosion resistance of TCC films were studied by the Tafel polarization curve and electrochemical impedance spectroscopy, and the conductivity was tested.
Findings
The TCC films were uniformly black and bright in appearance and were mainly compounds of Zn, Ni and Cr with O. The electrochemical impedance of the TCC film is larger than that of the Zn-Ni film, the corrosion current (Icorr) is smaller than that of the Zn-Ni film and the corrosion potential (Ecorr) is larger than that of the Zn-Ni film, which has excellent corrosion resistance. TCCs were performed on the appropriate size of the shell sample, and the resistance of the shells was 1.5 mVDC, which meets the total resistance requirements of the test standard for composite connector accessories.
Originality/value
In this study, TCC film was successfully prepared on the Zn-Ni coating on the surface of 2024 aluminum alloy. The TCC film has good corrosion resistance and electrical conductivity.