This work focuses on the support effect of the performances of Co based catalysts for acetic acid steam reforming. SBA-15, a well ordered hexagonal mesoporous silica structure, and CeO2 have been selected as the supports, with the impact of chromium addition also being investigated. Better acetic acid steam reforming performances have been recorded for CeO2 compared to SBA-15 supported catalysts and, in particular, the 7Co/CeO2 catalyst showed the highest values of acetic acid conversions with enhanced H2 yields below 480 °C, in comparison to the other investigated catalytic formulations. In addition, more pronounced coke depositions and acetone concentrations have been obtained with CeO2 supported catalysts, due to the tendency of ceria to catalyse the ketonization reaction. Chromium addition to Co/SBA-15 catalysts led to an enhancement in the activity towards acetic acid steam reforming, while on CeO2 supported catalysts no improvement in the catalysts’ activity was observed. However, on both SBA-15 and CeO2 supported catalysts, Cr addition reduced the amount of coke deposited on the catalysts surface.