“…Glycyrrhetinic acid has been shown to possess several pharmacological activities, such as antiulcerative, anti-inflammatory, immunomodulating, antitumor, antiviral, antihepatitis effects, and anticancer. Biotransformation 48 with a fungus C. blakesleeana (AS 3.970) yielded 3-oxo-7β-hydroxyglycyrrhetinic acid (49) and 7β-hydroxyglycyrrhetinic acid (50)[27], while of 48 using Absidia pseudocylindrospora (ATCC 24169), Gliocladium viride (ATCC 10097) and Cunninghamella echinulata (ATCC 8688a) afforded seven derivatives: 51, 52,7β,15α-dihydroxy-18β-glycyrrhetinic acid (53), 15α-hydroxy-18β-glycyrrhetinic acid (54), 1α-hydroxy-18β-glycyrrhetinic acid(55) and 13β-hydroxy-7α,27-oxy-12-dihydro-18β-glycyrrhetinic acid(56), and the epimer of compound 53 on C-17 (Figure 3)[28].Ginsenoside Rb1(61)is the most predominant protopanaxadiol-type ginsenoside in Panax species (ginseng). Several microbial transformations of this substrate (Ginsenoside Rb1) have been accomplished with an ample and varied group of microorganisms, all of these having β-glucosidase activities.…”