Cutaneous myoepithelial tumors form a clinicopathological spectrum ranging from mixed tumor to myoepithelioma and myoepithelial carcinoma. Recently, EWSR1 rearrangement has been described in a subset of soft tissue myoepithelial tumors, whereas the cutaneous counterparts showed this aberration in a minority of cases. This raises the question whether cutaneous myoepithelial tumors have comparable genetic alterations. We examined 18 cases of cutaneous myoepithelial tumors arising in 7 female and 11 male patients (age range, 34-86 years; mean, 58 years). Eight mixed tumors occurred at the head, and one at the scrotum. Six myoepitheliomas arose at the extremities, and one case each at the back and head. One myoepithelial carcinoma occurred at the cheek. The tumor size ranged from 0.3 to 1.7 cm (mean, 1.0 cm). All mixed tumors and three myoepitheliomas were limited to the dermis. Four myoepitheliomas and the myoepithelial carcinoma involved the subcutis. Mixed tumors and myoepitheliomas were composed of myoepithelial cells with a variable cytomorphology, architecture and stromal background. Ductal structures were seen by definition in mixed tumors. The myoepithelial carcinoma represented an infiltrative dermal neoplasm consisting of atypical spindle cells. Immunohistochemically, all cases tested were positive for EMA and calponin, whereas S100, CK, ASMA and GFAP were expressed in 90%, 80%, 78% and 50% of the cases tested, respectively. By fluorescent in situ hybridization analysis, 7 out of 16 cases (44%) exhibited EWSR1 rearrangement. Four of them were mixed tumors, two were myoepitheliomas and one was a myoepithelial carcinoma, confirming that these lesions represent a spectrum of dermal myoepithelial tumors. Follow-up information, available for five patients (including the patient with a myoepithelial carcinoma), revealed no evidence of disease in all cases (range, 6-72 months). Our study provides a genetic relationship of myoepithelial tumors of the skin with their counterparts in soft tissue, bone and visceral localization by sharing EWSR1 rearrangement.