Pathogen infection is common in wild plants and animals, and may regulate their populations. If pathogens have narrow host ranges and increase with the density of their favored hosts, they may promote host species diversity by suppressing common species to the benefit of rare species. Yet, because many pathogens infect multiple co-occurring hosts, they may not strongly respond to the relative abundance of a single host species. Are natural communities dominated by specialized pathogens that respond to the relative abundance of a specific host or by pathogens with broad host ranges and limited responses to the relative abundance of single host? The answer determines the potential for pathogens to promote host coexistence, as often hypothesized, or to have negligible or even negative effects on host coexistence. We lack a systematic understanding of the impacts, identities, and host ranges of pathogens in natural communities. Here we characterize a community of foliar fungal pathogens and evaluate their host specificity and fitness impacts in a California grassland community of native and exotic species. We found that most of the commonly isolated fungal pathogens were multi-host, with intermediate to low specialization. The amount of pathogen damage each host experienced was independent of host species local relative abundance. Despite pathogen sharing among the host species, fungal communities slightly differed in composition across host species. Plants with high pathogen damage tended to have lower seed production but the relationship was weak, suggesting limited fitness impacts. Moreover, seed production was not dependent on the local relative abundance of each plant species, suggesting that stabilizing coexistence mechanisms may operate at larger spatial scales in this community. Because foliar pathogens in this grassland community are multi-host and have small fitness impacts, they are unlikely to promote negative frequency dependence or plant species coexistence in this system. Still, given that pathogen community composition differentiates across host species, some more subtle feedbacks between host relative abundance and pathogen community composition, damage, and fitness impacts are possible, which could, in turn, promote either coexistence or competitive exclusion.