We prepared silver Schottky contacts to O-polar and nonpolar m-plane bulk ZnO wafers. Then, by considering various transport models, we performed a comparative analysis of the current transport properties of Ag/bulk ZnO Schottky diodes, which were measured at 300, 200, and 100 K. The fitting of the forward bias current-voltage (I-V) characteristics revealed that the tunneling current is dominant as the transport component in both the samples. Compared to thermionic emission (TE), a stronger contribution of tunneling current was observed at low temperature. The reverse bias I-V characteristics were well fitted with the thermionic field emission (TFE) in both the samples. The presence of acceptor-like adsorbates, such as O 2 and H 2 O, modulated the surface conductive state of ZnO, thereby affecting the tunneling effect. The degree of activation/passivation of acceptor-like adsorbates might be different in both the samples owing to their different surface morphologies and surface defects (e.g., oxygen vacancies).