The quality and market price of truffles vary with the species and, traditionally, the place of origin. The premium species Tuber magnatum produces white truffles and has a patchy distribution restricted to Italy and some Balkan areas. We used polymorphic microsatellites to evaluate 316 specimens grouped into 26 populations sampled across the species' geographic range to determine if natural populations of T. magnatum are genetically differentiated. We found that the southernmost and the northwesternmost populations were significantly differentiated from the rest of the populations. The simple sequence repeat data also could be used to make inferences about the postglacial T. magnatum expansion pattern. This study is the first to identify a genetic and phylogeographic structure in T. magnatum. The presence of a genetic structure can be of practical interest in tracing truffle populations according to their geographic origin for marketing strategies. Evidence for extensive outcrossing in field populations of T. magnatum also is provided for the first time.Tuber spp. are hypogeous ascomycetes that grow in ectomycorrhizal symbioses with some shrub and tree species and produce ascomata, known as truffles. Some truffles are edible and appreciated worldwide. Their quality and market price depend on the species and, traditionally, the place of origin. Natural truffle production has declined dramatically over the past century (12). This decline and the flourishing truffle market have encouraged large-scale programs for growing these fungi through the planting of nursery-produced mycorrhizal trees. These programs have been widely developed for some species, e.g., Tuber melanosporum Vittad. and Tuber uncinatum Chatin, and most of the commercial demand for these truffles is satisfied by these artificial plantations rather than natural field collections (12). How the deliberate introduction of foreign strains into native populations has affected truffle production and biodiversity remains unknown.The complexity of the truffle life cycle, the difficulties of growing these fungi under controlled conditions, and the lack of reliable phenotypic markers to differentiate morphologically similar species have been major obstacles to understanding the distribution, propagation, and fructification of these hypogeous fungi. Molecular markers have been developed to type most of the economically important truffle species (2,10,15,19,23,24,25,33,34), but studies of the environmental and molecular determinants for different portions of the life cycle generally are lacking. The spatial distribution and ecological requirements of these symbiotic fungi vary by species. Some species are widely distributed and have pronounced morphological and molecular variability (9,11,22,25,27,32), while others have a more restricted distribution and little intraspecific polymorphism in either morphological or genetic traits (3,4,8,9,26). Tuber magnatum Pico, which produces white ascomata, is harvested only in Italy and some countries on the Balkan Peninsul...